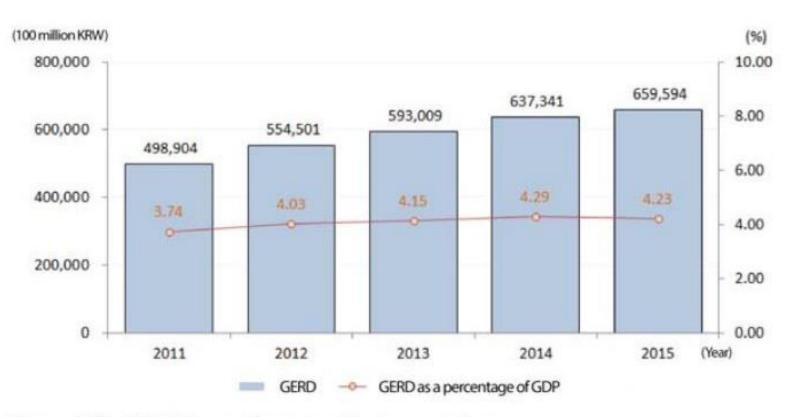


Korea R&D Status

Prof. Myung-Cheol Lee

Jul. 2017



R&D Expenditure 1

- Korea's Gross Domestic Expenditure on R&D is increasing every year
- The percentage of the GDP is almost 4% above

Gross domestic Expenditure on R&D (GERD)

Source: MSIP · KISTEP, Survey of Research and Development in Korea

R&D Expenditure (2)

- The private sector is the biggest source of the GERD fund in Korea
- And the government fund is almost 1/4 of the total Korea GERD

	20	2012		2013		14	2015		
	GERD (100 million KRW)	Percentage (%)							
Government	138,221	24.9	142,417	24.0	152,750	24.0	162,935	24.7	
Private	414,378	74.7	448,792	75.7	480,083	75.3	491,700	74.5	
Abroad	1,902	0.3	1,800	0.3	4,508	0.7	4,959	0.8	
Total	498,904	100.0	554,501	100.0	593,009	100.0	659,594	100.0	

GERD by source of funds in Korea

Source: MSIP · KISTEP, Survey of Research and Development in Korea

Percentage of GERD by source of funds in major countries (%)

	Korea ('15)	USA ('13)	Japan ('14)	Germany ('14)	France ('13)	UK ('14)	China ('14)
Government	24.7	34.7	22.3	29.2	37.0	34.6	20.3
Private	74.5	60,9	77.3	65.8	55.0	46.5	75.4
Abroad	0.8	4.5	0.4	5.0	8.0	18.9	0.8
Total	100.0	100.0	100.0	100.0	100.0	100.0	96.5

The sum of Government, Private and Abroad of China is less than 100,0%.

Source: OECD, MSTI 2016–1 (stats.oecd.org)

MSIP · KISTEP, Survey of Research and Development in Korea

R&D Expenditure ③

- The development research is the biggest type of the Korea R&D
- And basic & applied research are almost 20% of the GERD each other

GERD by	v type	of R&	D in K	orea				
	20	2012		2013		14	2015	
	GERD (100 million KRW)	Percentage (%)						
Basic research	101,533	18.3	106,658	18.0	112,426	17.6	113,617	17.2
Applied research	105,727	19.1	113,159	19.1	120,585	18.9	137,450	20,8
Development research	347,242	62.6	373,193	62.9	404,330	63.4	408,528	61.9
Total	554,501	100.0	593,009	100.0	637,341	100.0	659,594	100.0

Source: MSIP · KISTEP, Survey of Research and Development in Korea

GERD by type of R&D in major countries (%)

	Korea ('15)	USA (*13)	Japan ('14)	France ('13)	UK ('13)	China ('14)
Basic research	17.2	17.6	12,3	24,2	15.6	4.7
Applied research	20,8	19.9	19.9	37.9	46.9	10.7
Development research	61.9	62.5	63.4	34.5	37.5	84.5

▶ For Japan and France, other sources are excluded such that the total does not add up to 100,0%,

Source: OECD, Research and Development Statistics, 2016 (stats, oecd, org)

MSIP · KISTEP, Survey of Research and Development in Korea, 2015

R&D Expenditure (4)

- R&D expenditure is focusing on emerging technologies (IT, NT, etc.)
- And investment of the R&D fund to the BT is increasing every year

	20	12	20	2013		2014		2015	
	GERD (100 million KRW)	Percentage (%)							
Information Technology (IT)	189 <mark>,434</mark>	34.2	202,612	34.2	219,391	34.4	213,099	32.3	
Biotechnology (BT)	42,459	7.7	45,043	7.6	48,097	7.5	59,946	9.1	
Nanotechnology (NT)	71,193	12.8	78,193	13.2	83,587	13.1	86,609	13.1	
Space Technology (ST)	7,058	1.3	7,312	1.2	7,088	1.1	13,049	2.0	
Environment Technology (ET)	59,189	10.7	60,359	10.2	65,577	10.3	62,271	9.4	
Culture Technology (CT)	4,525	0.8	4,346	0.7	4,917	0.8	7,027	1.1	
Others	180,642	32.6	195,145	32.9	208,683	32.7	217,592	33.0	
Total	554,501	100.0	593,009	100,0	637,341	100.0	659,594	100.0	

Source: MSIP · KISTEP, Survey of Research and Development in Korea

R&D Expenditure (5)

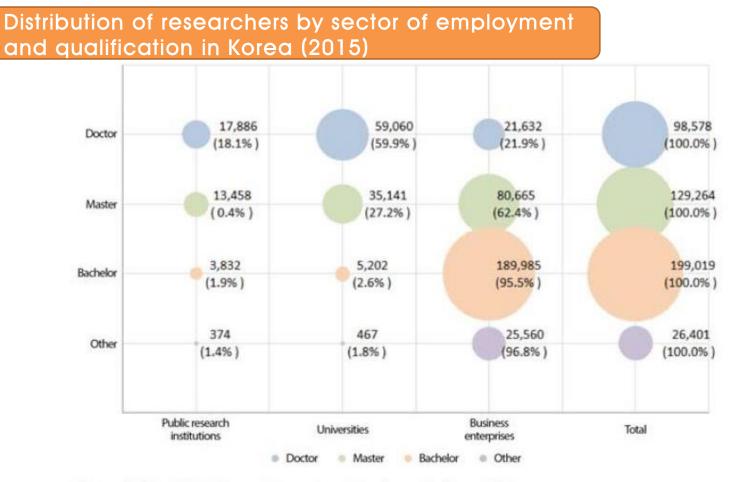
- IT and BT is the main technology that supported by government intramural expenditure on R&D (GOVERD) in Korea
- Especially, the GOVERD to the BT(biotechnology) is more than half of the subtotal amount in that sector

GOVERD (Government intramural expenditure on R&D) by emerging technologies (6T) in Korea

	20	12	20	13	20	14	20	15
	GOVERD (100 million KRW)	Percentage (%)						
Information Technology (IT)	28,856	19.7	29,742	19.0	30,041	18.4	33,368	19.0
Biotechnology (BT)	27,509	18.7	28,770	18.4	29,730	18,2	33,019	18.8
Nanotechnology (NT)	6,436	4.4	6,744	4.3	7,362	4.5	7,965	4.5
Space Technology (ST)	6,553	4.5	7,354	4.7	7,744	4.7	10,605	6.1
Environment Technology (ET)	23,455	16.0	24,163	15.5	24,577	15.1	23,928	13.7
Culture Technology (CT)	1,411	1.0	1,498	1.0	1,542	0.9	1,758	1.0
Others	52,576	35.8	57,932	37.1	62,151	38,1	64,557	36.8
Total	146,795	100.0	156,204	100.0	163,147	100	175,199	100.0

Subjects: Science and technology related and national defense R&D programs

Source: MSIP · KISTEP, Governmental R&D Survey and Analysis



R&D Personnel 1

- Human resource is the most important resource of the R&D activity
- Korea has many researchers in the public & private sectors

Source: MSIP · KISTEP, Survey of Research and Development in Korea, 2015

R&D Personnel 2

- But, the researchers are biased to the field of engineering
- So, medicine & health field need more researchers to study

Researchers by field of study in Korea

	20	12	20	13	20	14	20	15
	Researchers	Percentage (%)	Researchers	Percentage (%)	Researchers	Percentage (%)	Researchers	Percentage (%)
Natural science	53,654	13.4	51,494	12.5	54,772	12.5	57,976	12.8
Engineering	273,839	68.2	279,388	68.1	298,436	68.2	308,230	68.0
Medicine & health	19,945	5.0	23,292	5.7	23,522	5.4	24,066	5.3
Agricultural science	9,912	2.5	10,102	2.5	10,662	2.4	11,045	2.4
Humanities	20,413	5.1	20,834	5.1	22,870	5.2	23,996	5,3
Social science	23,961	6.0	25,223	6.1	27,185	6.2	27,949	6.2
Total	401,724	100.2	410,333	100.0	437,447	100.0	453,262	100.0

Source: MSIP - KISTEP, Survey of Research and Development in Korea

R&D Performance 1

Number of paper published in SCI journals in major countries

		2012	2013	2014	2015
	Number of papers	49,884	52,322	55,126	57,626
Korea	World share (%)	3.63	3.60	3.69	3.78
	World ranking	10	12	12	12
	Number of papers	379,946	393,820	399,393	399,729
USA	World share (%)	27.63	27.13	26.77	26.22
	World ranking	1	1	1	1
	Number of papers	78,488	80,095	78,385	76,847
Japan	World share (%)	5.71	5.52	5.25	5.04
	World ranking	5	5	5	5
	Number of papers	100,614	104,503	105,259	107,348
Germany	World share (%)	7.32	7.20	7.05	7.04
	World ranking	4	4	4	4
	Number of papers	70,110	73,040	72,751	73,766
France	World share (%)	5.10	5.03	4.88	4.84
	World ranking	6	6	6	6
	Number of papers	106,102	112,580	112,371	116,633
UK	World share (%)	7.71	7.76	7.53	7.65
	World ranking	3	3	3	3
	Number of papers	188,323	222,224	256,203	285,642
China	World share (%)	13.69	15.31	17,17	18.74
	World ranking	2	2	2	2

The Korea ranks 12th of the world by the number of SCI papers

World share (%) is the relative share to the total number of papers published worldwide, It is different from the relative share to the sum of the number of papers published yearly by each nation, which is greater than the total number of papers published worldwide due to papers co-authored by multiple countries.

Source: KISTEP · KAIST, SCI Analysis Research (2001-2015)

R&D Performance ⁽²⁾

 The Korea ranks 5th of the world by the number of patent application filed under the PCT
 *The PCT(Patent Connection Treats) notant is worldwide index of the PSID performance

*The PCT(Patent Cooperation Treaty) patent is worldwide index of the R&D performance

 This result maybe effected by the R&D type portfolio (development: 62%) and the leaned human resource distribution (engineering: 68%)

Number of patent application filed under the PCT in major countries (2016)

	Korea	USA	Japan	Germany	France	UK	China
PCT	10,994	42,139	34,203	13,467	5,602	4,062	30,658
Rank	5	1	2	4	6	7	3

Source: WIPO, WIPO Statistics Database, 2016,12 (ipstats,wipo,int)

Number of patent applications filed under the PCT in Korea

2013	2014	2015	2016
12,381	13,119	14,564	10,994

PCT (Patent Cooperation Treaty): International patent law treaty that provides a unified procedure for filing patent applications to protect inventions in each of its contracting states.

Source: WIPO, WIPO Statistics Database, 2016.12 (ipstats.wipo.int)

Main Science and Tech. Indicators ${\rm (1)}$

- Korea's R&D expenditure is not low compare to the other nations
- The researchers are enough to study advanced science & technology

R&D expenditure and personnel

	Korea ('15)	USA ('13)	Japan ('14)	Germany ('14)	France ('14)	UK ('14)	China ('14)
Gross Domestic Expenditure on R&D (100 million USD)	583 (6 th)	4,570 (1 st)	1,649 (3 rd)	1,120 (4 th)	638 (5 th)	508 (7 th)	2,119 (2 nd)
- Ratio	1.00	7.84	2.83	1.92	1.09	0.87	3.63
- As a percentage of GDP (%)	4.23	2.74	3.59	2.90	2.26	1.70	2.05
 Government · Public : Private · Foreign Ratio (%) 	25:75	35:65	22:78	29:71	37:63 ('13)	35:65	20:76
Government Expenditure on R&D (100 million USD)	167	1,372 ('15)	287 ('15)	287 ('15)	157 ('15)	167	-
- As a percentage of GDP (%)	1.21	0.76 (`15)	0.70 ('15)	0.86 ('15)	0.65 ('15)	0.56	_
Total Researchers (1,000 FTE)	356 (5 th)	1,308 (2 nd)	683 (3 rd)	-	269 (8 th)	274 (7 th)	1,524 (1 st)
Total Researchers per 1,000 labor force (FTE)	13.2 (4 th)	8.3 (17 th)	10.4 (10 th)	-	9.4 (13 th)	8.4 (16 th)	1.9 (36 th)

The sum of Government · Public: Private · Foreign Ratio in China is less than 100,0%,

 Germany was excluded since the numbers of total R&D personnel (FTE) are different in R&D Statistics, MSTI 2016–1, OECD.

▶ Total R&D expenditure in Korea: 65,9 trillion KRW ('15), Government Expenditure on R&D: 18,9 trillion KRW ('15)

Main Science and Tech. Indicators 2

- But, the performance is under the expectation concerning the inputs (expenditure & human resources)

R&D performance

		Korea	USA	Japan	Germany	France	UK	China
Publications ('15)	SCI Papers	57,626 (12 th)	399,729 (1 st)	76,847 (5 th)	107,348 (4 th)	73,766 (6 th)	116,633 (3 rd)	285,642 (2 nd)
	Number of triadic patent families ('13)	3,107 (4 th)	14,211 (2 nd)	16,197 (1 st)	5,525 (3 rd)	2,466 (5 th)	1,726 (7 th)	1,897 (6 th)
Patents	Number of patent applications to the PCT ('16)	10,994 (5 th)	42,139 (1 st)	34,203 (2 nd)	13,467 (4 th)	5,602 (6 th)	4,062 (7 th)	30,658 (3 rd)
Technology	Receipts (A, 100 million USD)	104.1	1,362.7 ('14)	345.5 ('14)	714.4 (14)	-	456.1 ('14)	-
balance of payments	Payments (B, 100 million USD)	164.1	894.2 ('14)	48.4 ('14)	543.6 ('14)	-	193.8 ('14)	-
alance of Payn ayments (B, 10 15) Balar	Balance of payments ratio (A/B)	0.63	1.52 ('14)	7.13 ('14)	1.31 ('14)	-	2.35 ('14)	-
R&D-intensive industries ('15)	R&D-intensive balance of payments (100 million USD)	655.7 ('14)	- 1,391.9	- 331.0	375.7	115.7	- 225.1	1,523.4
IMD	Competitiveness ranking	29	3	26	12	32	18	25
evaluation ('16)	- Science	8	1	2	6	12	9	5
(10)	- Technology	15	3	10	16	17	11	18

Conclusion

Money and Human Resource is enough to research & develop

And, we have to find the right direction to put our resources

In addition, cooperation with the other is essential to all of us

This is the reason we come here we gather here we meet here

Thank you for your attention